Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.07.24.550423

ABSTRACT

Background: Host response is critical to the onset, progression, and outcome of viral infections. Since viruses hijack the host cellular metabolism for their replications, we hypothesized that restoring host cell metabolism can efficiently reduce viral production. Here, we present a viral-host Metabolic Modeling (vhMM) method to systematically evaluate the disturbances in host metabolism in viral infection and computationally identify targets for modulation by integrating genome-wide precision metabolic modeling and cheminformatics. Results: In SARS-CoV-2 infections, we identified consistent changes in host metabolism and gene and endogenous metabolite targets between the original SARS-COV-2 and different variants (Alpha, Delta, and Omicron). Among six compounds predicted for repurposing, methotrexate, cinnamaldehyde, and deferiprone were tested in vitro and effective in inhibiting viral production with IC50 less than 4uM. Further, an analysis of real-world patient data showed that cinnamon usage significantly reduced the SARS-CoV-2 infection rate with an odds ratio of 0.65 [95%CI: 0.55~0.75]. Conclusions: These results demonstrated that vhMM is an efficient method for predicting targets and drugs for viral infections.


Subject(s)
COVID-19 , Virus Diseases , Severe Acute Respiratory Syndrome , Attention Deficit and Disruptive Behavior Disorders
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.14.528496

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is a major cell entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Induction of ACE2 expression may represent an effective tactic employed by SARS-CoV-2 to facilitate its own propagation. However, the regulatory mechanisms of ACE2 expression after viral infection remain largely unknown. By employing an array of 45 different luciferase reporters, we identify that the transcription factor Sp1 positively and HNF4 negatively regulate the expression of ACE2 at the transcriptional levels in HPAEpiC cells, a human lung epithelial cell line. SARS-CoV-2 infection promotes and inhibits the transcription activity of Sp1 and HNF4, respectively. The PI3K/AKT signaling pathway, which is activated by SARS-CoV-2 infection, is a crucial node for induction of ACE2 expression by increasing Sp1 phosphorylation, an indicator of its activity, and reducing HNF4 nuclear location. Furthermore, we show that colchicine could inhibit the PI3K/AKT signaling pathway, thereby suppressing ACE2 expression. Inhibition of Sp1 by either its inhibitor mithramycin A or colchicine reduces viral replication and tissue injury in Syrian hamsters infected with SARS-CoV-2. In summary, our study uncovers a novel function of Sp1 in regulating ACE2 expression and suggests that Sp1 is a potential target to reduce SARS-CoV-2 infection.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL